(*) Some theory (and a pretty picture)

Given a continuous function $f(x)$, there are infinitely many functions whose derivative is equal to $f(x)$. If $F(x)$ is one of these, then all the others have the form $F(x)+C$ for some unspecified (indefinite) value of the constant C. We express this with the notation

$$
\int f(x) d x=F(x)+C
$$

Since all of the antiderivatives of $f(x)$ differ from each other by an additive constant, their graphs are all parallel, which means, among other things, that if $G^{\prime}(x)=H^{\prime}(x)=f(x)$, then either $G(x)=H(x)$ for all $x,{ }^{\dagger}$ or $G(x) \neq H(x)$ for any x. I.e., graphs of different antiderivatives of $f(x)$ do not intersect, as in the image below.

Hypothetically, if we sketch all of the antiderivatives of $f(x)$, then the entire plane would be covered. Combining this observation with the fact that the graphs of different antiderivatives don't intersect leads to the following useful fact:

If x_{0} is in the interval $(a, b), f(x)$ is continuous in this interval and y_{0} is any value, then there exists a unique function $F(x)$ satisfying (i) $F^{\prime}(x)=f(x)$ (in (a, b)) and (ii) $F\left(x_{0}\right)=y_{0}$.

(*) Example

Find the function $y=f(x)$ satisfying (i) $y^{\prime}=x^{2}-3 x+1$ and (ii) $y(1)=-1$.
Step 1. Integrate

$$
\int x^{2}-3 x+1 d x=\frac{x^{3}}{3}-3 \frac{x^{2}}{2}+x+C .
$$

This means that solution has the form $y=\frac{x^{3}}{3}-3 \frac{x^{2}}{2}+x+C$, and it remains to find the unique value of C that works.

[^0]Step 2. Solve for C
Use the given initial value $y(1)=-1$:

$$
-1=y(1)=\frac{1^{3}}{3}-3 \frac{1^{2}}{2}+1+C=-\frac{1}{6}+C \Longrightarrow C=-\frac{5}{6} .
$$

Step 3. Solution: $y=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+x-\frac{5}{6}$.

[^0]: ${ }^{\dagger}$ For all x where $f(x)$ is defined.

