
ams/econ 11b Class Notes — 1/22-24/18 ucsc

(*) Summation formulas

(i)
n∑

k=1

f(k)± g(k) =
n∑
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(ii)
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f(k)

(iii)
n∑

k=1

c = nc

(iv)
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k =
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2
+
n

2

(
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2

)

(v)
n∑
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k2 =
n3
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+
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2
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6

(
=
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6

)

(vi)
n∑

k=1

k3 =
n4

4
+
n3

2
+
n2

4

(
=
n2(n+ 1)2

4

)

(*) Area calculation 1 — the easy way

In class, we considered the problem of calculating the area of the region R bounded by the
lines y = x + 1, y = 0 (the x-axis), x = 0 (the y-axis) and x = 3. This region is illustrated
below in Figure 1
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Figure 1: Region R

The quick and easy way to do this is to use simple formulas from geometry. For example,
we see that the region R is a triangle (with corners at (0, 1), (3, 1) and (3, 4)) on top of a
rectangle (with corners (0, 0), (0, 1), (3, 1) and (3, 0)), as illustrated in Figure 2 below.

The rectangle has width 3 and height 1, so its area is 3× 1 = 3, and the triangle has base
3 and height 3, so its area is 1

2
(3× 1) = 1.5. This means that the area of the region is

area(R) = 3 + 1.5 = 4.5.
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Figure 2: Triangle on top of rectangle — the dotted line is their common side.

(*) Area calculation 2 — the interesting way

Area is defined in terms of squares and by extension, rectangles. The area of a square
with side a is by definition a2. The area of a rectangle with sides a and b is, by a simple
generalization (or by definition, if you prefer) ab.

The formula for the area of a triangle is obtained by observing that a triangle is half
of a rectangle that has the same height and width (base) as the triangle. The areas of
other geometric shapes with straight edges are obtained in similar ways. Specifically, any
2-dimensional region bounded by (finitely many) straight edges can be partitioned into
(finitely many) rectangles and/or triangles. The area of such a region is then equal to the
sum of the areas of its rectangular/triangular parts.

The question is: how do we find the area of regions that are bounded by curves that aren’t
straight? For example, where does the formula, A = πr2, for the area A of a circle of radius
r come from?

The answer is — also using rectangles (or triangles, in some cases, like the case of a circle).
The problem is that we can’t partition such a region into finitely many rectangles/triangles
exactly. The solution to this problem is to approximately cover the region in question with
finitely many rectangles (or triangles) to obtain an approximation to the area of the region
(equal to the sum of the areas of the rectangles/triangles). Then, we repeat this process
with more and more rectangles — which we take to be thinner and thinner — so that
they cover the region more and more accurately (with smaller and smaller errors), so the
approximation to the area of the region becomes more and more accurate.

Then we take a limit.

I will illustrate with the region R from before.

The first step is to divide the interval [0, 3] on the x-axis into n subintervals,

[x0, x1], [x1, x2], [x2, x3], . . . , [xk−1, xk], . . . , [xn−1, xn],

where x0 = 0 and xn = 3. We call this collection of intervals a partition of [0, 3]. Fur-
thermore, to keep things simple, we can choose the intervals to all have the same width, so
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Figure 3: Covering the region R with rectangles.

that

x1 − x0 = x2 − x1 = x3 − x2 = · · · = xk − xk−1 = · · · = xn − xn−1 =
3

n
because we have divided and interval of length 3 into n equal parts. With this choice, we
see that x1 = x0 + 3

n
= 0 + 3

n
= 3

n
, x2 = x1 + 3

n
= 2 · 3

n
, x3 = x2 + 3

n
= 3 · 3

n
and so on. In

general, for k = 1, . . . , n, we have

xk = k · 3

n
=

3k

n
.

Next, we cover the region R with n rectangles, r1, r2, . . . , rn, where for each k, rk covers
the vertical strip from [xk−1, xk] to the line y = x + 1, as depicted in Figure 3, above. The
height of rk is xk + 1 = 3k

n
+ 1, so the area of rk is

area(rk) =

base︷︸︸︷
3

n
·

height︷ ︸︸ ︷(
3k

n
+ 1

)
=

9k

n2
+

3

n
.

From Figure 3, we see that the sum of the areas of the rectangles rk is approximately equal
to the area of the region R (it’s a little bit of an overestimate), so (using the summation
formulas above)

area(R) ≈
n∑

k=1

area(rk) =
n∑

k=1

(
9k

n2
+

3

n

)

=
n∑

k=1

9k

n2
+

n∑
k=1

3

n
=

9

n2

(
n∑

k=1

k

)
+�n ·

3

�n

=
9

n2

(
n2

2
+
n

2

)
+ 3 =

9

��n
2
·�
�n2

2
+

9

n�2
·�n

2
+ 3

= 7.5 +
9

2n
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We already know that area(R) = 7.5, so we can see that we are on the right track. Moreover,
since this works for any number n of rectangles, we also see that the error of approximation,
9/2n, grows smaller and smaller as n grows larger and larger. We can express this more
formally by writing

area(R) = lim
n→∞

(
n∑

k=1

area(rk)

)
= lim

n→∞

(
n∑

k=1

9k

n2
+

3

n

)
= lim

n→∞
7.5 +

9

2n
= 7.5.

Observation: The advantage of the ‘more interesting’ method is that it generalizes, as we
shall see. The advantage of the easy method is that it was easy and allowed us to test the
new method in a situation where we knew what the answer was.

(*) The definite integral

The definite integral of the function y = f(x) on the interval [a, b] is denoted by∫ b

a

f(x) dx

and is defined by the limit∫ b

a

f(x) dx = lim
n→∞

(
n∑

j=1

f(x∗j) ·∆xj

)
,

assuming that the limit exists. In this definition we assume that for each n:

(i) a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The collection of subintervals {[x0, x1], [x1, x2], . . . , [xn−1, xn]} is called a partition
of the interval [a, b].

(ii) x∗j is a point (chosen as we please) in the interval [xj−1, xj], i.e., xj−1 ≤ x∗j ≤ xj.

(iii) ∆xj = xj−xj−1, for j = 1, 2, . . . , n. This is the length of the jth subinterval, [xj−1, xj].

For the definition above to be useful, we require that widths of all of the subintervals in the
nth partition become smaller and smaller, as the number n of subintervals grows larger and
larger. To make this requirement more precise, we define δn to be the length of the longest
subinterval in the partition,†

δn = max
1≤j≤n

∆j.

With this notation, the requirement described above can be expressed by writing

(iv) lim
n→∞

δn = 0.

Comments:

• The definite integral
∫ b

a
f(x) dx returns a numerical value.‡

†This number δn is called the diameter of the partition.
‡In contrast to the indefinite integral

∫
f(x) dx which returns a collection of functions.
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• If the function f(x) is continuous, then the limit defining the integral
∫ b

a
f(x) dx always

exists independently of how the partitions are chosen and of how the points x∗j are
chosen. This means that we can choose the partitions and x∗js to make calculating the
integral as easy as possible (more on that later).

• We were led to the definition above by considering the problem of computing the area.
However, the definite integral is not defined in terms of area. Computing area is just
one of many applications of definite integration.

• The sum,
∑n

j=1 f(x∗j) ·∆xj, appearing in the definition of the definite integral is called

a Riemann sum.§

(*) Right-hand and left-hand sums

Since the value of the limit defining the definite integral does not depend on the way that
the partitions are chosen (when the integrand is continuous), we can choose things to be
convenient.

With this in mind, the simplest way to form a partition of the interval [a, b] is to divide it
into n equal subintervals. This choice means that all of the subintervals in the partition
have (the same) length:

∆x = ∆xj = (xj − xj−1) =
b− a
n

.

Since all of the intervals have the same length, δn = b−a
n

and condition (iv) is seen to be
satisfied in this case, because

lim
n→∞

δn = lim
n→∞

b− a
n

= 0.

Second, this choice also makes the values of the endpoints x0, x1, x2, . . . , xn easy to deter-
mine. Specifically,

x0 = a, x1 = a+
b− a
n

, x2 = a+2 · b− a
n

, . . . , xj = a+j · b− a
n

, . . . , xn = a+n · b− a
n

= b,

because xj is exactly j steps of size ∆x to the right of a.

Next, we have to choose x∗j (the point where f(x) is evaluated in [xj−1, xj]). The two most
common choices here are x∗j = xj (the right-hand endpoint) or x∗j = xj−1 (the left-hand
endpoint).

With the choices ∆xj = b−a
n

and x∗j = xj, the resulting Riemann sum,

n∑
j=1

f(xj)∆xj =
n∑

j=1

f

(
a+ j · b− a

n

)
·
(
b− a
n

)
,

is called a right-hand sum for the integral
∫ b

a
f(x) dx.

Likewise, with ∆xj = b−a
n

and x∗j = xj−1, the resulting Riemann sum,

n∑
j=1

f(xj−1)∆xj =
n∑

j=1

f

(
a+ (j − 1) · b− a

n

)
·
(
b− a
n

)
,

is called a left-hand sum for the integral
∫ b

a
f(x) dx.

§Named for Bernhard Riemann. The integral, so defined, is called the Riemann integral.
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(*) Example

Find the area of the region bounded by the curve y = x2 and the lines y = 0, x = 1 and
x = 3. To do this, we observe that if f(x) ≥ 0 for x in the interval [a, b], then the area of
the region bounded by y = f(x), y = 0 (the x-axis), x = a and x = b is given by the definite

integral
∫ b

a
f(x) dx.

I will use right-hand sums to calculate

area(R) =

∫ 3

1

x2 dx,

where R is the region in question, as illustrated in Figure 4, below.

To compute the integral, we use the following steps: (i) Determine the partition correspond-
ing to n, which means finding ∆xj and the endpoints of the subintervals x0, x1, x2, . . . , xn.
(ii) Write down the right-hand sum corresponding to this partition and then simplify it.
(iii) Compute the limit of the right-hand sums as n→∞.

-1 0 1 2 3 4 5 6

R

Figure 4: The region in Example 1.

Step (i) Divide the interval [1, 3] into n equal pieces, which means that

◦ ∆xj =
3− 1

n
=

2

n
, and therefore

◦ xj = 1 + j · 2

n
= 1 +

2j

n
.

Step (ii) Write down the righthand sum and simplify
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RHS(n) =
n∑

j=1

f(xj)∆xj =
n∑

j=1

(
1 +

2j

n

)2

· 2

n
=

2

n

n∑
j=1

(
1 +

4j

n
+

4j2

n2

)

=
2

n

(
n∑

j=1

1 +
4

n

n∑
j=1

j +
4

n2

n∑
j=1

j2

)

=
2

n
· n+

8

n2
· n(n+ 1)

2
+

8

n3
· n(n+ 1)(2n+ 1)

6

= 2 +
4n2 + 4n

n2
+

8n3 + 12n2 + 4n

3n3

= 2 + 4 +
8

3
+

4

n
+

4

n
+

4

3n2
=

26

3
+

8

n
+

4

3n2

Step (iii) Compute the integral (and therefore the area of R) by finding the limit of the
righthand sums as n→∞

area(R) =

∫ 3

1

x2 dx = lim
n→∞

(
n∑

j=1

f(xj)∆xj

)

= lim
n→∞

(
n∑

j=1

(
1 +

2j

n

)2

· 2

n

)

= lim
n→∞

(
26

3
+

8

n
+

4

3n2

)
=

26

3
.

Observation: The indefinite integral of f(x) = x2 is∫
x2 dx =

x3

3
+ C,

in other words, if F (x) is an antiderivative of f(x) = x2, then F (x) =
x3

3
+ C. This is

interesting, because if F (x) is any one of these antiderivatives, then

F (3)− F (1) =

(
33

3
+��C

)
−
(

13

3
+��C

)
=

27− 1

3
=

26

3
=

∫ 3

1

x2 dx.

This is not a coincidence.

7


