
ams/econ 11b Class Notes — 2/12/18 ucsc

(*) Population growth models — Exponential growth

The simplest model for population growth is based on the assumption that the population
grows at a rate proportional to its size. This assumption considers only the factors intrinsic
to the population itself, e.g., birthrate, and leads to the differential equation

dP

dt
= rP,

where P (t) is the size of the population at time t, and r is the intrinsic growth rate. This
equation is easy to solve (after separating the variables):

dP

P
= r dt =⇒

∫
dP

P
= r

∫
dt =⇒ lnP = rt + C =⇒ P = Aert,

where

• P > 0, so we can drop the absolute value sign.

• A = eC , and in fact...

• A = P (0) = P0, the initial population size.

I.e., the exponential growth model is

P (t) = P0e
rt.

Example 5. The population of a small island in the year 1950 was 870 people, and in the
year 2000, the population was 1250. Assuming exponential growth, what will the island’s
population be in the year 2050? How about in 2150?

Based on the assumption of exponential growth, we have

P (t) = 870ert,

with time being measured in years, and t = 0 corresponding to the year 1950. This means
that

1250 = P (50) = 870e50r =⇒ e50r =
1250

870
=⇒ 50r = ln(125/87)

=⇒ r =
1

50
ln(125/87) (≈ 0.00725)

Therefore
P (100) = 870e100r ≈ 1796 and P (200) = 870e200r ≈ 3708.

The exponential growth model P = P0e
rt can be quite accurate in the short run, but not

in the long run, because an exponentially growing population will eventually outstrip its
resources. This observation leads to a different model.

1



(*) Population growth models — Logistic growth

This model accounts for the fact that populations grow in environments that have lim-
ited resources. Such an environment has a carrying capacity, which is the maximum
(sustainable) size for the population growing there.

The logistic model is based on the following assumptions/requirements.

(i) When the population is small relative to the carrying capacity, it should grow at a rate
(approximately) proportional to its size (like exponential growth).

(ii) As the population gets close to the carrying capacity in size, the growth rate should
approach 0.

(iii) If the initial population size is bigger than the carrying capacity, the growth rate should
be negative.

(iv) The model should be as simple as possible.

If the carrying capacity is M and the intrinsic growth rate is r, then the first three assump-
tions translate to

(i) If P/M ≈ 0, then
dP

dt
≈ rP .

(ii) If P/M ≈ 1, then
dP

dt
≈ 0.

(iii) If P/M > 1, then
dP

dt
< 0.

These assumptions (and the desire for as simple a model as possible), lead to the logistic
equation:

dP

dt
= rP

(
1− P

M

)
,

which satisfies all three conditions:

(*) If P/M ≈ 0, then rP
(
1− P

M

)
≈ rP (1− 0) = rP

(*) If P/M ≈ 1, then rP
(
1− P

M

)
≈ rP (1− 1) = 0

(*) If P/M > 1, then rP
(
1− P

M

)
< 0

The logistic equation is separable and is solved as follows.

First, factor out 1/M from the second factor on the right

dP

dt
= rP

(
1− P

M

)
=

r

M
P (M − P ) .

Then separate
dP

P (M − P )
=

r

M
dt.

Then integrate (using formula #5 in the appendix, with a = M and b = −1)∫
dP

P (M − P )
=

∫
r

M
dt =⇒ 1

M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

M
+ C.
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Finally, solve for P

1

��M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

��M
+ C =⇒ ln

∣∣∣∣ P

M − P

∣∣∣∣ = rt + C

=⇒ P

M − P
= Aert

where A = ±eC .

A little more algebra:

P = (M − P )Aert = AMert − APert =⇒ P + APert = AMert

=⇒ P (1 + Aert) = AMert

=⇒ P =
AMert

1 + Aert

The formula for P (t) can be further manipulated in different ways.

One approach is to divide the numerator and denominator by Aert which gives

P =
M

1 + be−rt
,

where b = A−1. (Our textbook does it this way.)

Another approach is to replace A by a more meaningful parameter. Both M and r have
meaningful interpretations, and it is relatively easy to express A in terms of M and the
initial population size P0.

If t = 0, then

P0 = P (0) =
AM

1 + A
=⇒ AM = P0(1 + A) = P0 + AP0

=⇒ AM − AP0 = P0 =⇒ A(M − P0) = P0

=⇒ A =
P0

M − P0

Now, substitute this for A in the first expression for P

P =
AMert

1 + Aert
=⇒

P0

M−P0
Mert

1 + P0

M−P0
ert

Finally, multiply both top and bottom by (M − P0)e
−rt, which gives

P (t) =
P0M

P0 + (M − P0)e−rt
.

Example. A new virus is spreading on a closed network of 5000 computers. By the time
the virus is first spotted, 25 computers are infected, and two hours later 200 computers are
infected. Assuming logistic growth, how many hours before half the network is infected?
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Figure 1: Graph of P =
P0M

P0 + (M − P0)e−rt

In this example, we know the carrying capacity M = 5000 and the initial population size
P0 = 25, so the number of infected computers at time t is

P (t) =
25 · 5000

25 + 4975e−rt
=

5000

1 + 199e−rt
.

From the data, we have

P (2) =
5000

1 + 199e−2r
= 200 =⇒ 5000 = 200(1 + 199e−2r)

=⇒ 25 = 1 + 199e−2r

=⇒ 24 = 199e−2r

=⇒ e2r =
199

24

=⇒ r =
1

2
ln(199/24)

Finally, solve the equation P (t1) = 5000/2 = 2500:

2500 =
5000

1 + 199e−rt1
=⇒ 1 + 199e−rt1 =

5000

2500
= 2

=⇒ 199e−rt1 = 1 =⇒ ert1 = 199

=⇒ t1 =
ln 199

r
=

ln 199
1
2

ln(199/24)
≈ 5

Conclusion: Half the network will be infected about 5 hours after the virus is first detected.

4


