(*) Linear approximation with partial derivatives

The partial derivatives of a function w = f(x, y) are defined by the same limits,

$$\frac{\partial w}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x},$$
$$\frac{\partial w}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y},$$

that define an ordinary derivative of a function of one variable. This means that the argument justifying the idea of linear approximation for a function of one variable can be extended to functions of several variables.

Specifically, given the function w = f(x, y) and a point (x_0, y_0) , it follows from the definition that

$$\left. \frac{\partial w}{\partial x} \right|_{\substack{x=x_0 \\ y=y_0}} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

and therefore if $\Delta x \approx 0$, then

$$\frac{\partial w}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}} \approx \frac{\overbrace{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}^{\Delta w}}{\Delta x}$$

and multiplying both sides of this approximate equality by Δx shows that if $\Delta x \approx 0$, then

$$\Delta w \approx \frac{\partial w}{\partial x} \Big|_{\substack{x=x_0 \ y=y_0}} \cdot \Delta x.$$

Implicit in this version of linear approximation is the assumption that only the variable x is changing, i.e., y is held fixed at y_0 .

And of course we can play the same game with the variable y, holding x fixed at x_0 . I.e., if

$$\Delta w = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$$

and $\Delta y \approx 0$, then

$$\Delta w \approx \frac{\partial w}{\partial y} \Big|_{\substack{x=x_0 \ y=y_0}} \cdot \Delta y.$$

(*) Example.

Suppose that the demand function for a monopolistic firm's good is given by

$$q = 3\ln\left(4Y^{1/2} - 0.5p\right),\,$$

where

- q is the monthly demand for the firm's good, measured in 1000s of units,
- p is the price/unit of the firm's good, and
- Y is the average monthly household income in the market for the firm's good.

When the price is $p_0 = 10$ and the average monthly income is \$4000.00 (so $Y_0 = 4$), the demand for the firm's good is

$$q_0 = 3\ln(4\cdot 4^{1/2} - 0.5\cdot 10) \approx 3.296,$$

which translates to about 3,296 units/month.

The partial derivative of q with respect to p and Y at the point above are

$$\left. \frac{\partial q}{\partial p} \right|_{\substack{p=10 \ V-4}} = \frac{3 \cdot (-0.5)}{4Y^{1/2} - 0.5p} \right|_{\substack{p=10 \ V-4}} = \frac{3 \cdot (-0.5)}{4 \cdot 4^{1/2} - 0.5 \cdot 10} = \frac{-1.5}{3} = -0.5$$

and

$$\left. \frac{\partial q}{\partial Y} \right|_{\stackrel{p=10}{Y=4}} = \left. \frac{3 \cdot \left(4 \cdot \frac{1}{2} Y^{-1/2}\right)}{4 Y^{1/2} - 0.5 p} \right|_{\stackrel{p=10}{Y=4}} = \frac{3 \cdot \left(4 \cdot \frac{1}{2} 4^{-1/2}\right)}{4 \cdot 4^{1/2} - 0.5 \cdot 10} = \frac{3}{3} = 1.$$

If the firm raises its price to $p_1 = 10.4$ and the income remains the same, then $\Delta p = 0.4$ and, using linear approximation, we see that the change in demand will be

$$\Delta q \approx \left. \frac{\partial q}{\partial p} \right|_{\substack{p=10 \ Y=4}} \cdot \Delta p = -0.5 \cdot 0.4 = -0.2,$$

i.e., demand for the firm's good will decrease by about 200 units/month.

On the other hand, if the firm keeps their price fixed at $p_0 = 10$, but the average monthly income increases to \$4270.00, so that $Y_1 = 4.27$ and $\Delta Y = 0.27$, then the change in demand will be

$$\Delta q \approx \left. \frac{\partial q}{\partial Y} \right|_{\substack{p=10\\Y=4}} \cdot \Delta Y = 1 \cdot 0.27 = 0.27,$$

i.e., demand will *increase* by about 270 units/month.

(*) Elasticity

Just as we have generalized the *ordinary* derivatives of functions of one variable to *partial* derivatives of functions of several variables, so we can generalize the *elasticity* of a function y = f(x) with respect to the variable x, to the *partial elasticities* of a function w = f(x, y) of several variables with respect to each of its different variables.

We define the partial elasticities of w as we did for functions of one variable, and these definitions result in similar formulas to the ones we found in the one variable case.

Specifically, if only the variable x is changing (i.e., y is held fixed) so that

$$\Delta w = f(x + \Delta x, y) - f(x, y)$$
 and $\% \Delta w = \frac{\Delta w}{w} \cdot 100\%$

then the x-elasticity of w is given by

$$\eta_{w/x} = \lim_{\Delta x \to 0} \frac{\% \Delta w}{\% \Delta x} = \dots = \frac{\partial w}{\partial x} \cdot \frac{x}{w}.$$

Likewise, if only the variable y is changing (so x is held fixed) we have

$$\Delta w = f(x, y + \Delta y) - f(x, y)$$
 and $\% \Delta w = \frac{\Delta w}{w} \cdot 100\%$

and the y-elasticity of w is given by

$$\eta_{w/y} = \lim_{\Delta y \to 0} \frac{\% \Delta w}{\% \Delta y} = \dots = \frac{\partial w}{\partial y} \cdot \frac{y}{w}.$$

Moreover, all the basic uses of elasticity that we found in the one variable case continue to be valid with the added stipulation that only one variable is changing.

Example. Returning to the demand function in the example above, $q = 3 \ln(4Y^{1/2} - 0.5p)$, the price-elasticity of demand, $\eta_{q/p}$, when $p_0 = 10$ and Y = 4, is

$$\left. \eta_{q/p} \right|_{\substack{p=10 \ Y=4}} = \left. \left(\frac{\partial q}{\partial p} \cdot \frac{p}{q} \right) \right|_{\substack{p=10 \ Y=4}} \approx (-0.5) \cdot \frac{10}{3.296} \approx -1.517.$$

We can conclude that demand for the firm's product is *elastic* when p = 10 (and Y = 4), because $|\eta_{q/p}| > 1$. Relatively small (percentage) changes in price will result in relatively larger (percentage) changes in demand.

For example, a price increase from $p_0 = 10$ to $p_1 = 10.40$ is a

$$\frac{0.4}{10} \cdot 100\% = 4\%$$

change in price. This will result in a percentage change in demand of about

$$\%\Delta q \approx \eta_{q/p} \Big|_{\substack{p=10\\Y=4}} \cdot \%\Delta p \approx (-1.517) \cdot 4\% = -6.068\%.$$

I.e., a 4% increase in price results in a slightly more than 6% decrease in demand.