
ams/econ 11b Class Notes — 2/21/18 ucsc

(*) Linear approximation, more generally

Our story thus far... We have already learned that given a function z = f(x, y) and a point
(x0, y0), if ∆x ≈ 0 and ∆z = f(x0 + ∆x, y0)− f(x0, y0) (so y is held fixed), then

∆z ≈ ∂z

∂x

∣∣∣∣
x=x0
y=y0

·∆x.

Likewise, if ∆z = f(x0, y0 + ∆y)− f(x0, y0) and ∆y ≈ 0 (and x is not changing), then

∆z ≈ ∂z

∂y

∣∣∣∣
x=x0
y=y0

·∆y.

These two approximation formulas naturally lead to the question: what if both variables, x
and y, change a little? I.e., what can we say about the change

∆z = f(x0 + ∆x, y0 + ∆y)− f(x0, y0),

if both ∆x ≈ 0 and ∆y ≈ 0 (but neither is equal to 0)?

The answer is a simple generalization of the approximation formulas above. Namely, if
∆x ≈ 0 and ∆y ≈ 0, then

∆z = f(x0 + ∆x, y0 + ∆y)− f(x0, y0) ≈
∂z

∂x

∣∣∣∣
x=x0
y=y0

·∆x +
∂z

∂y

∣∣∣∣
x=x0
y=y0

·∆y. (1)

This fact generalizes to any number of variables. For example, if w = g(x, y, z) and

∆w = g(x0 + ∆x, y0 + ∆y, z0 + ∆z)− g(x0, y0, z0),

then

∆w ≈ ∂w

∂x

∣∣∣∣ x=x0
y=y0
z=z0

·∆x +
∂w

∂y

∣∣∣∣ x=x0
y=y0
z=z0

·∆y +
∂w

∂z

∣∣∣∣ x=x0
y=y0
z=z0

·∆z (2)

as long as ∆x ≈ 0, ∆y ≈ 0 and ∆z ≈ 0.

Example. A firm produces two related goods A and B. The variables qA and qB are the
quantities of these products that the firm produces each month, both measured in 100s of
units, and the firm’s joint cost function for producing these goods is

C = 0.04q2A + 0.06qAqB + 0.05q2B + 20qA + 25qB + 50,

where C is the monthly cost, measured in $1000s.

The firm is currently producing 1000 units of A and 1000 units of B,† and the current
monthly cost of production is

C
∣∣∣
qA=10
qB=10

= 0.04 · 102 + 0.06 · 102 + 0.05 · 102 + 20 · 10 + 25 · 10 + 50 = 110,

†So qA = qB = 10.
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i.e., the firm’s monthly cost is $110,000.

The current marginal costs of products A and B are

∂C

∂qA

∣∣∣∣
qA=10
qB=10

= 0.08qA + 0.06qB + 20
∣∣∣
qA=10
qB=10

= 0.8 + 0.6 + 20 = 21.4

and
∂C

∂qB

∣∣∣∣
qA=10
qB=10

= 0.06qA + 0.1qB + 25
∣∣∣
qA=10
qB=10

= 0.6 + 1 + 25 = 26.6

respectively.

If the firm increases the production of good A by 10 units a month and increases the
production of good B by 20 units a month, then

∆qA =
10

100
= 0.1 and ∆qB =

20

100
= 0.2

and

∆C ≈ ∂C

∂qA

∣∣∣∣
qA=10
qB=10

∆qA +
∂C

∂qB

∣∣∣∣
qA=10
qB=10

∆qB = 21.4 · 0.1 + 26.6 · 0.2 = 7.46,

as follows from the (more) general linear approximation formula (1). That is, the firm’s
monthly cost will increase by about $7460.00.

(*) The linear Taylor polynomial in several variables.

We found that a function of one variable, y = f(x), can be approximated by a linear function
T1(x) in the vicinity of any point where f(x) is differentiable. Specifically, we found that if
f is differentiable at x0 and x ≈ x0, then

f(x) ≈ f(x0) + f ′(x0)(x− x0) = T1(x). (3)

The linear function T1(x) is called the linear Taylor polynomial for f(x) centered at x0 and
the graph y = T1(x) is the tangent line to the curve y = f(x) at the point (x0, f(x0)).

The approximation in Equation (3), is just another way of viewing the approximation

∆y ≈ dy

dx

∣∣∣∣
x=x0

·∆x,

where ∆y = f(x) − f(x0) and ∆x = x − x0, and we can rewrite the linear approximation
formulas (1) and (2) in the same way, as follows below.

All we have to do is rename and rearrange. First consider the linear approximation formula
(1) for the function z = f(x, y). If we write ∆x = x−x0 and ∆y = y−y0, then x0 +∆x = x
and y0 + ∆y = y, then the approximation (1) can be written as

f(x, y)− f(x0, y0) ≈ fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0),

(replacing the ∂z/∂x notation with the fx notation for convenience). Now, adding f(x0, y0)
to both sides of the approximation above gives

f(x, y) ≈ f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0). (4)
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The linear function T1(x, y) = f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0) is called
the linear Taylor polynomial for f(x, y) centered at (x0, y0).

This general form of linear approximation applies to any number of variables. E.g., returning
to the three-variable function, w = g(x, y, z) and if we write x0 + ∆x = x, y0 + ∆y = y and
z0 + ∆z = z, so that

∆x = x− x0, ∆y = y − y0 and ∆z = z − z0,

then the approximation formula (2) can be written

g(x, y, z)− g(x0, y0, z0) ≈ gx(x0, y0, z0)(x− x0) + gy(x0, y0, z0)(y− y0) + gz(x0, y0, z0)(z − z0)

or

g(x, y, z) ≈ g(x0, y0, z0) + gx(x0, y0, z0)(x− x0) + gy(x0, y0, z0)(y− y0) + gz(x0, y0, z0)(z− z0).

The linear function

T1(x, y, z) = g(x0, y0, z0) + gx(x0, y0, z0)(x−x0) + gy(x0, y0, z0)(y− y0) + gz(x0, y0, z0)(z− z0)

is the linear Taylor polynomial for w = g(x, y, z) centered at (x0, y0, z0), and linear
approximation (in three variables) can be written as

f(x, y, z) ≈ T1(x, y, z),

assuming that x ≈ x0, y ≈ y0 and z ≈ z0.

Example. Suppose that g(x, y, z) = 3
√

x2 + 2y2 + 5z2 and that x0 = y0 = z0 = 1. Then,
first of all, g(1, 1, 1) = 3

√
1 + 2 + 5 = 3

√
8 = 2. Next,

gx =
∂

∂x
(x2 + 2y2 + 5z2)1/3 =

1

3
(x2 + 2y2 + 5z2)−2/3 · 2x =

2x

3(x2 + 2y2 + 5z2)2/3
,

and likewise,‡

gy =
4y

3(x2 + 2y2 + 5z2)2/3
and gz =

10z

3(x2 + 2y2 + 5z2)2/3
.

Therefore,

gx(1, 1, 1) =
2 · 1

3 · 82/3
=

1

6
, gy(1, 1, 1) =

4 · 1
3 · 82/3

=
1

3
and gz(1, 1, 1) =

10 · 1
3 · 82/3

=
5

6
.

It follows that the linear Taylor polynomial for g(x, y, z) centered at (1, 1, 1) is

T1(x, y, z) = 2 +
1

6
(x− 1) +

1

3
(y − 1) +

5

6
(z − 1).

‡Check!
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For functions of one variable, we found that we could improve linear approximation by using
quadratic approximation. Namely, if f ′(x) and f ′′(x) are both defined at x0 and

T2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2,

then
f(x) ≈ T2(x)

as long as x ≈ x0. To extend this idea to functions of several variables, we need to consider
the second order partial derivatives of such functions.

(*) Higher order partial derivatives

The (first order) partial derivatives of a function z = f(x, y) are

fx = zx =
∂z

∂x
and fy = zy =

∂z

∂y
.

The second order partial derivatives of a function z = f(x, y) are (not surprisingly) the
partial derivatives of its (first order) partial derivatives:

∂

∂x

(
∂z

∂x

)
=

∂2z

∂x2
= zxx = (zx)x

∂

∂x

(
∂z

∂y

)
=

∂2z

∂x∂y
= zyx = (zy)x

∂

∂y

(
∂z

∂x

)
=

∂2z

∂y∂x
= zxy = (zx)y

and
∂

∂y

(
∂z

∂y

)
=

∂2z

∂y2
= zyy = (zy)y

Example. If z = 4x3 + 3x2y − 2xy2 + y3, then its (first order) partial derivatives are

zx = 12x2 + 6xy − 2y2 and zy = 3x2 − 4xy + 3y2

and its second order partial derivatives are

zxx = 24x + 6y, zyx = 6x− 4y, zxy = 6x− 4y and zyy = −4x + 6y.

Observation: In this example, zxy = zyx.

Coincidence? ...No.

Fact:

Second and higher order partial derivatives do not depend on the order with respect
to which a function is differentiated, only on the number of times the function
is differentiated with respect to each variable.
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The third order partial derivatives of a function of two or more variables are the partial
derivatives of its second order partial derivatives.

Notation: For z = f(x, y)

zxxx =
∂3z

∂x3
,

aforementioned fact︷ ︸︸ ︷
zxyx = zxxy =

∂3z

∂x2∂y
, etc.

Example. (continued) For z = 4x3 + 3x2y − 2xy2 + y3 we already know that

zxx = 24x + 6y, zyx = 6x− 4y = zxy and zyy = −4x + 6y.

so
zxxx = 24, zyxx = 6, zxyx = 6, zyyx = −4,

zxxy = 6, zyxy = −4, zxyy = −4 and zyyy = 6

Note that
zyxx = zxyx = zxxy = 6 and zyyx = zyxy = zxyy = −4,

as the ‘Fact’ predicted.
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