(*) Linear approximation, more generally

Our story thus far... We have already learned that given a function $z=f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$, if $\Delta x \approx 0$ and $\Delta z=f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)$ (so y is held fixed), then

$$
\left.\Delta z \approx \frac{\partial z}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0}}} \cdot \Delta x
$$

Likewise, if $\Delta z=f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)$ and $\Delta y \approx 0$ (and x is not changing), then

$$
\left.\Delta z \approx \frac{\partial z}{\partial y}\right|_{\substack{x=x_{0} \\ y=y_{0}}} \cdot \Delta y
$$

These two approximation formulas naturally lead to the question: what if both variables, x and y, change a little? I.e., what can we say about the change

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

if both $\Delta x \approx 0$ and $\Delta y \approx 0$ (but neither is equal to 0)?
The answer is a simple generalization of the approximation formulas above. Namely, if $\Delta x \approx 0$ and $\Delta y \approx 0$, then

$$
\begin{equation*}
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-\left.f\left(x_{0}, y_{0}\right) \approx \frac{\partial z}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0}}} \cdot \Delta x+\left.\frac{\partial z}{\partial y}\right|_{\substack{x=x_{0} \\ y=y_{0}}} \cdot \Delta y \tag{1}
\end{equation*}
$$

This fact generalizes to any number of variables. For example, if $w=g(x, y, z)$ and

$$
\Delta w=g\left(x_{0}+\Delta x, y_{0}+\Delta y, z_{0}+\Delta z\right)-g\left(x_{0}, y_{0}, z_{0}\right)
$$

then

$$
\begin{equation*}
\left.\Delta w \approx \frac{\partial w}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0} \\ z=z_{0}}} \cdot \Delta x+\left.\frac{\partial w}{\partial y}\right|_{\substack{x=x_{0} \\ y=y_{0} \\ z=z_{0}}} \cdot \Delta y+\left.\frac{\partial w}{\partial z}\right|_{\substack{x=x_{0} \\ y=y_{0} \\ z=z_{0}}} \cdot \Delta z \tag{2}
\end{equation*}
$$

as long as $\Delta x \approx 0, \Delta y \approx 0$ and $\Delta z \approx 0$.
Example. A firm produces two related goods A and B. The variables q_{A} and q_{B} are the quantities of these products that the firm produces each month, both measured in 100s of units, and the firm's joint cost function for producing these goods is

$$
C=0.04 q_{A}^{2}+0.06 q_{A} q_{B}+0.05 q_{B}^{2}+20 q_{A}+25 q_{B}+50
$$

where C is the monthly cost, measured in $\$ 1000$ s.
The firm is currently producing 1000 units of A and 1000 units of $B,^{\dagger}$ and the current monthly cost of production is

$$
\left.C\right|_{\substack{q_{A}=10 \\ q_{B}=10}}=0.04 \cdot 10^{2}+0.06 \cdot 10^{2}+0.05 \cdot 10^{2}+20 \cdot 10+25 \cdot 10+50=110
$$

[^0]i.e., the firm's monthly cost is $\$ 110,000$.

The current marginal costs of products A and B are

$$
\left.\frac{\partial C}{\partial q_{A}}\right|_{\substack{q_{A}=10 \\ q_{B}=10}}=0.08 q_{A}+0.06 q_{B}+\left.20\right|_{\substack{q_{A}=10 \\ q_{B}=10}}=0.8+0.6+20=21.4
$$

and

$$
\left.\frac{\partial C}{\partial q_{B}}\right|_{\substack{q_{A}=10 \\ q_{B}=10}}=0.06 q_{A}+0.1 q_{B}+\left.25\right|_{\substack{q_{A}=10 \\ q_{B}=10}}=0.6+1+25=26.6
$$

respectively.
If the firm increases the production of good A by 10 units a month and increases the production of good B by 20 units a month, then

$$
\Delta q_{A}=\frac{10}{100}=0.1 \text { and } \Delta q_{B}=\frac{20}{100}=0.2
$$

and

$$
\left.\Delta C \approx \frac{\partial C}{\partial q_{A}}\right|_{\substack{q_{A}=10 \\ q_{B}=10}} \Delta q_{A}+\left.\frac{\partial C}{\partial q_{B}}\right|_{\substack{q_{A}=10 \\ q_{B}=10}} \Delta q_{B}=21.4 \cdot 0.1+26.6 \cdot 0.2=7.46
$$

as follows from the (more) general linear approximation formula (1). That is, the firm's monthly cost will increase by about $\$ 7460.00$.

$\left(^{*}\right)$ The linear Taylor polynomial in several variables.

We found that a function of one variable, $y=f(x)$, can be approximated by a linear function $T_{1}(x)$ in the vicinity of any point where $f(x)$ is differentiable. Specifically, we found that if f is differentiable at x_{0} and $x \approx x_{0}$, then

$$
\begin{equation*}
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=T_{1}(x) \tag{3}
\end{equation*}
$$

The linear function $T_{1}(x)$ is called the linear Taylor polynomial for $f(x)$ centered at x_{0} and the graph $y=T_{1}(x)$ is the tangent line to the curve $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$.
The approximation in Equation (3), is just another way of viewing the approximation

$$
\left.\Delta y \approx \frac{d y}{d x}\right|_{x=x_{0}} \cdot \Delta x
$$

where $\Delta y=f(x)-f\left(x_{0}\right)$ and $\Delta x=x-x_{0}$, and we can rewrite the linear approximation formulas (1) and (2) in the same way, as follows below.
All we have to do is rename and rearrange. First consider the linear approximation formula (1) for the function $z=f(x, y)$. If we write $\Delta x=x-x_{0}$ and $\Delta y=y-y_{0}$, then $x_{0}+\Delta x=x$ and $y_{0}+\Delta y=y$, then the approximation (1) can be written as

$$
f(x, y)-f\left(x_{0}, y_{0}\right) \approx f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right),
$$

(replacing the $\partial z / \partial x$ notation with the f_{x} notation for convenience). Now, adding $f\left(x_{0}, y_{0}\right)$ to both sides of the approximation above gives

$$
\begin{equation*}
f(x, y) \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right) \tag{4}
\end{equation*}
$$

The linear function $T_{1}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)$ is called the linear Taylor polynomial for $f(x, y)$ centered at $\left(x_{0}, y_{0}\right)$.

This general form of linear approximation applies to any number of variables. E.g., returning to the three-variable function, $w=g(x, y, z)$ and if we write $x_{0}+\Delta x=x, y_{0}+\Delta y=y$ and $z_{0}+\Delta z=z$, so that

$$
\Delta x=x-x_{0}, \Delta y=y-y_{0} \text { and } \Delta z=z-z_{0}
$$

then the approximation formula (2) can be written
$g(x, y, z)-g\left(x_{0}, y_{0}, z_{0}\right) \approx g_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+g_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)$
or
$g(x, y, z) \approx g\left(x_{0}, y_{0}, z_{0}\right)+g_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+g_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)$.
The linear function
$T_{1}(x, y, z)=g\left(x_{0}, y_{0}, z_{0}\right)+g_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+g_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)$
is the linear Taylor polynomial for $w=g(x, y, z)$ centered at $\left(x_{0}, y_{0}, z_{0}\right)$, and linear approximation (in three variables) can be written as

$$
f(x, y, z) \approx T_{1}(x, y, z)
$$

assuming that $x \approx x_{0}, y \approx y_{0}$ and $z \approx z_{0}$.
Example. Suppose that $g(x, y, z)=\sqrt[3]{x^{2}+2 y^{2}+5 z^{2}}$ and that $x_{0}=y_{0}=z_{0}=1$. Then, first of all, $g(1,1,1)=\sqrt[3]{1+2+5}=\sqrt[3]{8}=2$. Next,

$$
g_{x}=\frac{\partial}{\partial x}\left(x^{2}+2 y^{2}+5 z^{2}\right)^{1 / 3}=\frac{1}{3}\left(x^{2}+2 y^{2}+5 z^{2}\right)^{-2 / 3} \cdot 2 x=\frac{2 x}{3\left(x^{2}+2 y^{2}+5 z^{2}\right)^{2 / 3}},
$$

and likewise, ${ }^{\ddagger}$

$$
g_{y}=\frac{4 y}{3\left(x^{2}+2 y^{2}+5 z^{2}\right)^{2 / 3}} \text { and } g_{z}=\frac{10 z}{3\left(x^{2}+2 y^{2}+5 z^{2}\right)^{2 / 3}} .
$$

Therefore,

$$
g_{x}(1,1,1)=\frac{2 \cdot 1}{3 \cdot 8^{2 / 3}}=\frac{1}{6}, g_{y}(1,1,1)=\frac{4 \cdot 1}{3 \cdot 8^{2 / 3}}=\frac{1}{3} \text { and } g_{z}(1,1,1)=\frac{10 \cdot 1}{3 \cdot 8^{2 / 3}}=\frac{5}{6} .
$$

It follows that the linear Taylor polynomial for $g(x, y, z)$ centered at $(1,1,1)$ is

$$
T_{1}(x, y, z)=2+\frac{1}{6}(x-1)+\frac{1}{3}(y-1)+\frac{5}{6}(z-1) .
$$

[^1]For functions of one variable, we found that we could improve linear approximation by using quadratic approximation. Namely, if $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are both defined at x_{0} and

$$
T_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2},
$$

then

$$
f(x) \approx T_{2}(x)
$$

as long as $x \approx x_{0}$. To extend this idea to functions of several variables, we need to consider the second order partial derivatives of such functions.

(*) Higher order partial derivatives

The (first order) partial derivatives of a function $z=f(x, y)$ are

$$
f_{x}=z_{x}=\frac{\partial z}{\partial x} \quad \text { and } \quad f_{y}=z_{y}=\frac{\partial z}{\partial y} .
$$

The second order partial derivatives of a function $z=f(x, y)$ are (not surprisingly) the partial derivatives of its (first order) partial derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) & =\frac{\partial^{2} z}{\partial x^{2}}=z_{x x}=\left(z_{x}\right)_{x} \\
\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) & =\frac{\partial^{2} z}{\partial x \partial y}=z_{y x}=\left(z_{y}\right)_{x} \\
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right) & =\frac{\partial^{2} z}{\partial y \partial x}=z_{x y}=\left(z_{x}\right)_{y}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}}=z_{y y}=\left(z_{y}\right)_{y}
$$

Example. If $z=4 x^{3}+3 x^{2} y-2 x y^{2}+y^{3}$, then its (first order) partial derivatives are

$$
z_{x}=12 x^{2}+6 x y-2 y^{2} \quad \text { and } \quad z_{y}=3 x^{2}-4 x y+3 y^{2}
$$

and its second order partial derivatives are

$$
z_{x x}=24 x+6 y, \quad z_{y x}=6 x-4 y, \quad z_{x y}=6 x-4 y \quad \text { and } \quad z_{y y}=-4 x+6 y
$$

Observation: In this example, $z_{x y}=z_{y x}$.
Coincidence? ...No.

Fact:

Second and higher order partial derivatives do not depend on the order with respect to which a function is differentiated, only on the number of times the function is differentiated with respect to each variable.

The third order partial derivatives of a function of two or more variables are the partial derivatives of its second order partial derivatives.
Notation: For $z=f(x, y)$

$$
z_{x x x}=\frac{\partial^{3} z}{\partial x^{3}}, \quad \overbrace{z_{x y x}=z_{x x y}}^{\text {aforementioned fact }}=\frac{\partial^{3} z}{\partial x^{2} \partial y}, \quad \text { etc. }
$$

Example. (continued) For $z=4 x^{3}+3 x^{2} y-2 x y^{2}+y^{3}$ we already know that

$$
z_{x x}=24 x+6 y, \quad z_{y x}=6 x-4 y=z_{x y} \quad \text { and } \quad z_{y y}=-4 x+6 y .
$$

so

$$
\begin{gathered}
z_{x x x}=24, z_{y x x}=6, z_{x y x}=6, z_{y y x}=-4, \\
z_{x x y}=6, z_{y x y}=-4, z_{x y y}=-4 \text { and } z_{y y y}=6
\end{gathered}
$$

Note that

$$
z_{y x x}=z_{x y x}=z_{x x y}=6 \quad \text { and } \quad z_{y y x}=z_{y x y}=z_{x y y}=-4,
$$

as the 'Fact' predicted.

[^0]: ${ }^{\dagger}$ So $q_{A}=q_{B}=10$.

[^1]: ${ }^{\ddagger}$ Check!

