(*) Examples: Profit Maximization

Joint weekly demand functions for a firm's competing products:

$$
\begin{aligned}
& Q_{A}=100-3 P_{A}+2 P_{B} \\
& Q_{B}=60+2 P_{A}-2 P_{B}
\end{aligned}
$$

Weekly cost of producing Q_{A} units of product A and Q_{B} units of product B :

$$
C=20 Q_{A}+30 Q_{B}+1200
$$

Firm's weekly profit function

$$
\begin{aligned}
\Pi= & P_{A} Q_{A}+P_{B} Q_{B}-C \\
= & P_{A}\left(100-3 P_{A}+2 P_{B}\right)+P_{B}\left(60+2 P_{A}-2 P_{B}\right) \\
& -\left(20\left(100-3 P_{A}+2 P_{B}\right)+30\left(60+2 P_{A}-2 P_{B}\right)+1200\right) \\
= & -3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
\end{aligned}
$$

Weekly profit function

$$
\Pi=-3 P_{A}^{2}+4 P_{A} P_{B}-2 P_{B}^{2}+100 P_{A}+80 P_{B}-5000
$$

First order conditions for max:

$$
\begin{array}{llr}
\Pi_{P_{A}}=0 & \Longrightarrow & -6 P_{A}+4 P_{B}+100=0 \\
\Pi_{P_{B}}=0 & \Longrightarrow & 4 P_{A}-4 P_{B}+80=0
\end{array}
$$

Adding the two equations together gives an equation for the critical P_{A} value:

$$
-2 P_{A}+180=0 \Longrightarrow P_{A}^{*}=90
$$

Substituting this in the second equation $\left(\Pi_{P_{B}}=0\right)$ yields the critical P_{B} value:

$$
4 \cdot 90-4 P_{B}+80=0 \Longrightarrow-4 p_{B}+440=0 \Longrightarrow P_{B}^{*}=110 .
$$

The corresponding critical weekly outputs are

$$
Q_{A}^{*}=100-3 P_{A}^{*}+2 P_{B}^{*}=50 \quad \text { and } \quad Q_{B}^{*}=60+2 P_{A}^{*}-2 P_{B}^{*}=20 .
$$

The critical weekly revenue is $R^{*}=P_{A}^{*} Q_{A}^{*}+P_{B}^{*} Q_{B}^{*}=6700$, the critical weekly cost is $C^{*}=20 Q_{A}^{*}+30 Q_{B}^{*}+1200=2800$, and the critical weekly profit is $\Pi^{*}=R^{*}-C^{*}=3900$.

The critical question: Is Π^{*} the maximum weekly profit?
To answer this, we need...

(*) The second derivative test

The second derivative test for a function of two variables states the following:
Suppose that $f_{x}(a, b)=0=f_{y}(a, b)$ (so ($\left.a, b\right)$ is a critical point) and let

$$
D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

be the discriminant. Then there are three possibilities for $D(a, b)$.
D1. If $D(a, b)>0$, then $f(a, b)$ is either a relative minimum value or a relative maximum value, depending on $f_{x x}(a, b)$ (or equivalently, $f_{y y}(a, b)$):

- If $f_{x x}(a, b)>0$, then $f(a, b)$ is a relative minimum value.
- If $f_{x x}(a, b)<0$, then $f(a, b)$ is a relative maximum value.

D2. If $D(a, b)<0$, then $f(a, b)$ is neither a relative minimum value nor a relative maximum value.

D3. If $D(a, b)=0$, then we cannot draw any conclusions about $f(a, b)$.
Profit maximization example (continued):
We found the critical prices to be $P_{A}^{*}=90$ and $P_{B}^{*}=110$ and the critical profit to be $\Pi^{*}=3900$. The second derivatives in this case are

$$
\Pi_{P_{A} P_{A}}=-6, \quad \Pi_{P_{A} P_{B}}=4 \text { and } \Pi_{P_{B} P_{B}}=-4
$$

so the discriminant is

$$
D\left(P_{A}^{*}, P_{B}^{*}\right)=\Pi_{P_{A} P_{A}} \cdot \Pi_{P_{B} P_{B}}-\Pi_{P_{A} P_{B}}^{2}=24-16=8>0 .
$$

Since the discriminant is positive and $\Pi_{P_{A} P_{A}}=-6<0$, the critical profit $\Pi^{*}=3900$ is a maximum value.

(*) Justification of the second derivative test. ${ }^{\dagger}$

The second derivative test is based on the following observation:
If (a, b) is a critical point of the function $f(x, y)$, then

$$
f(x, y) \approx f(a, b)+\frac{f_{x x}(a, b)}{2}(x-a)^{2}+f_{x y}(a, b)(x-a)(y-b)+\frac{f_{y y}(a, b)}{2}(y-b)^{2}
$$

for all points (x, y) that are close to $(a, b) . \ddagger$
Starting from this observation, we first subtract $f(a, b)$ from both sides of the approximate identity above to see that if (x, y) is close to (a, b), then

$$
\begin{equation*}
f(x, y)-f(a, b) \approx A u^{2}+B u v+C v^{2} \tag{1}
\end{equation*}
$$

where (to make writing things easier)

[^0]- $A=\frac{f_{x x}(a, b)}{2}, B=f_{x y}(a, b)$ and $C=\frac{f_{y y}(a, b)}{2}$;
- $u=(x-a)$ and $v=(y-b)$.

Next, we pull out a factor of A from the right hand side of (1) and then complete the square in the bracketed expression:

$$
\begin{aligned}
A u^{2}+B u v+C v^{2}=A\left[u^{2}+\frac{B}{A} u v+\frac{C}{A} v^{2}\right]= & {[\underbrace{u^{2}+\frac{B}{A} u v+\frac{B^{2}}{4 A^{2}} v^{2}}-\frac{B^{2}}{4 A^{2}} v^{2}+\frac{C}{A} v^{2}] } \\
& =A\left[\left(u+\frac{B}{2 A} v\right)^{2}+\left(\frac{C}{A}-\frac{B^{2}}{4 A^{2}}\right) v^{2}\right] \\
= & A\left[\left(u+\frac{B v}{2 A}\right)^{2}+\left(\frac{4 A C-B^{2}}{4 A^{2}}\right) v^{2}\right] \\
& =A\left[\left(u+\frac{B v}{2 A}\right)^{2}+D(a, b)\left(\frac{v}{2 A}\right)^{2}\right]
\end{aligned}
$$

where

$$
D(a, b)=4 A C-B^{2}=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

Finally, ignoring the algebraic wizardry in the last paragraph, we conclude that if (x, y) is close to the critical point (a, b), then

$$
f(x, y)-f(a, b) \approx A \overbrace{\left[\left(u+\frac{B v}{2 A}\right)^{2}+D \cdot\left(\frac{v}{2 A}\right)^{2}\right]}^{Q(x, y)} .
$$

The squared expressions in $Q(x, y)$ are always positive, so if $D(a, b)$ is also positive, then $Q(x, y)>0$ for all (x, y). In this case, there are two possibilities:

- If $A=f_{x x}(a, b)>0$, then $f(x, y)-f(a, b)>0$ for all (x, y) close to (a, b), which means that $f(a, b)$ is a relative minimum value.
- If $A=f_{x x}(a, b)<0$, then $f(x, y)-f(a, b)<0$ for all (x, y) close to (a, b), which means that $f(a, b)$ is a relative maximum value.

This case with its two subcases corresponds to case D1 of the second derivative test.
On the other hand, if $D(a, b)<0$ then $Q(x, y)$ has the form $S^{2}-|D| T^{2}$, which will assume positive values at some points (x, y) close to (a, b) and negative values at other points (x, y) close to (a, b). This means that $A Q(x, y)$ will also assume both positive and negative values, and therefore the difference $f(x, y)-f(a, b)$ will be positive for some points close to (a, b) and negative at others. Therefore, $f(a, b)$ is neither a minimum nor a maximum value of the function, since there are nearby values which are greater and other nearby values which are smaller. This corresponds to case D2 of the second derivative test.

The explanation for case D3, is a little more involved, so we will leave it alone.

(*) Pretty pictures

In the vicinity of a relative maximum or minimum value (i.e., case D1 of the secoond derivative test) the graph of a function $z=f(x, y)$ will have one of the shapes below.

Figure 1: Case D1 of the second derivative test, both possibilities.
In the vicinity of a critical point where the discriminant is negative (i.e., case D2 of the secoond derivative test) the graph of a function $z=f(x, y)$ will often (but not always) have a shape similar to the one below.

Figure 2: Case D2 of the second derivative test.
This shape is reminiscent of a western saddle, and a point like this called a saddle point for this reason.
(*) Example.
Find the critical points and classify the critical values of

$$
f(x, y)=x^{2}+y^{2}-x y+x^{3} .
$$

The partial derivatives are

$$
f_{x}=2 x-y+3 x^{2} \quad \text { and } \quad f_{y}=2 y-x .
$$

and solving the pair of equations

$$
\begin{array}{r}
2 x-y+3 x^{2}=0 \\
2 y-x=0
\end{array}
$$

we find that the critical points are $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(-1 / 2,-1 / 4)$, with critical values $f(0,0)=0$ and $f(-1 / 2,-1 / 4)=1 / 16$.
On to the second derivative test:
Discriminant: $f_{x x}=2+6 x, \quad f_{x y}=-1 \quad$ and $\quad f_{y y}=2$, so

$$
D(x, y)=\overbrace{2(2+6 x)}^{f_{x x} f_{y y}}-\overbrace{(-1)^{2}}^{f_{x y}^{2}}=12 x+3 .
$$

Analysis:
$\left(^{*}\right) D(0,0)=3>0$ and $f_{x x}(0,0)=2>0$, so $f(0,0)=0$ is a relative minimum value.
(*) $D(-1 / 2,-1 / 4)=-3<0$, so $f(-1 / 2,-1 / 4)=5 / 16$ is neither a minimum nor a maximum value.

Figure 3: Graph of $z=x^{2}+y^{2}-x y+x^{3}$, with critical points (blue dots)

[^0]: †Algebra Will Robinson! Algebra Will Robinson!!
 ${ }^{\ddagger}$ This follows from quadratic approximation, as you can read about in SN 2 on the Supplements page of the course website.

