(*) The Envelope Theorem and the multiplier in constrained optimization

As we saw in class on Wednesday (and in Supplemental Notes \#5), one of the important applications of the envelope theorem is to constrained optimization.

Suppose that we solve the problem of finding the maximum/minimum value of the (objective) function $f(x, y, z)$ subject to a constraint of the form $g(x, y, z)=c$ using the method of Lagrange multipliers. Briefly, we form the Lagrangian

$$
F(x, y, z, \lambda)=f(x, y, z)-\lambda(g(x, y, z)-c)
$$

and find the critical point $\left(x^{*}, y *, z^{*}, \lambda^{*}\right)$ by solving the system of equations

$$
F_{x}=0, \quad F_{y}=0, \quad F_{z}=0 \quad \text { and } \quad F_{\lambda}=0 .
$$

Since $F_{\lambda}=-(g(x, y, z)-c)$, it follows that $g\left(x^{*}, y^{*}, z^{*}\right)-c=0$, and therefore

$$
F^{*}=F\left(x^{*}, y^{*}, z^{*}, \Lambda^{*}\right)=f\left(x^{*}, y^{*}, z^{*}\right)-\lambda^{*} \overbrace{\left(g\left(x^{*}, y^{*}, z^{*}\right)-c\right)}^{=0}=f\left(x^{*}, y^{*}, z^{*}\right)=f^{*} .
$$

That is to say the constrained optimum f^{*} is always the same as the critical value of the Lagrangian F^{*}.
This is useful, because it allows us to easily find the rate of change of f^{*} with respect to the constraint c. Specifically, we can use the envelope theorem as follows.

$$
\overbrace{\frac{d f^{*}}{d c}=\frac{d F^{*}}{d c}}^{f^{*}=F^{*}} \overbrace{\left.\frac{\partial F}{\partial c}\right|_{\substack{x=x^{*} \\ y=y^{*} \\ z=z^{*} \\ \lambda=\lambda^{*}}} ^{\text {Envelope }}=\left.\lambda\right|_{\substack{x=x^{*} \\ y=y^{*} \\ z=z^{*} \\ \lambda=\lambda^{*}}}=\lambda^{*}}
$$

because

$$
\frac{\partial F}{\partial c}=\frac{\partial}{\partial c}(f(x, y, z)-\lambda(g(x, y, z)-c))=\frac{\partial}{\partial c}(f(x, y, z)-\lambda g(x, y, z)+\lambda c)=\lambda .
$$

In words, the critical value of the multiplier λ^{*} gives the rate of change of the constrained optimum f^{*} with respect to the constraining parameter c. In practical terms, linear approximation tells us that if the constraining parameter changes by Δc, then the constrained optimum changes by $\Delta f^{*} \approx\left(d f^{*} / d c\right) \cdot \Delta c=\lambda^{*} \cdot \Delta c$. In particular, if $\Delta c=1$, then $\Delta f^{*} \approx \lambda^{*}$.
(*) But...
The interpretation of λ^{*} given above is just one (important) application of the envelope theorem. The envelope theorem is a general tool for finding the rate of change of a critical value with respect to a parameter, and shouldn't be confused with one of its applications.

