Final Exam

Instructions

- There are 6 questions worth a total of 54 points. $100 \%=50$ points.
- No notes or books. A table of integration formulas is provided.
- You may use a simple scientific calculator. No graphing or programmable calculators.
- Take your time. Answer each question completely. Check your answers.
- For full credit-explain/show your work.

Good Luck!!!

NAME:

Problem	Score
1	$/ 12$
2	$/ 6$
3	$/ 10$
4	$/ 8$
5	$/ 10$
6	$/ 8$
Total	$/ 60$

Selected Integration Formulas

Basic rules.

1. $\int u^{k} d u=\frac{u^{k+1}}{k+1}+C, \quad k \neq-1$.
2. $\int \frac{1}{u} d u=\ln |u|+C$.
3. $\int e^{u} d u=e^{u}+C$.
4. $\int f(u) \pm g(u) d u=\int f(u) d u \pm \int g(u) d u$.
5. $\int c \cdot f(u) d u=c \cdot \int f(u) d u$.

Rational forms containing (a $+\mathbf{b u}$).
6. $\int \frac{d u}{a+b u}=\frac{1}{b} \ln |a+b u|+C$.
7. $\int \frac{u d u}{a+b u}=\frac{u}{b}-\frac{a}{b^{2}} \ln |a+b u|+C$.
8. $\int \frac{u^{2} d u}{a+b u}=\frac{u^{2}}{2 b}-\frac{a u}{b^{2}}+\frac{a^{2}}{b^{3}} \ln |a+b u|+C$.
9. $\int \frac{u^{2} d u}{(a+b u)^{2}}=\frac{u}{b^{2}}-\frac{a^{2}}{b^{3}(a+b u)}-\frac{2 a}{b^{3}} \ln |a+b u|+C$.

Forms containing $\sqrt{\mathrm{a}+\mathrm{bu}}$.

10. $\int u \sqrt{a+b u} d u=\frac{2(3 b u-2 a)(a+b u)^{3 / 2}}{15 b^{2}}+C$.
11. $\int \frac{u d u}{\sqrt{a+b u}}=\frac{2(b u-2 a) \sqrt{a+b u}}{3 b^{2}}+C$.
12. $\int \frac{u^{2} d u}{\sqrt{a+b u}}=\frac{2\left(3 b^{2} u^{2}-4 a b u+8 a^{2}\right) \sqrt{a+b u}}{15 b^{3}}+C$.

Exponential and logarithmic forms.
13. $\int e^{a u} d u=\frac{e^{a u}}{a}+C$.
14. $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)+C$.
15. $\int u^{n} e^{a u} d u=\frac{u^{n} e^{a u}}{a}-\frac{n}{a} \int u^{n-1} e^{a u} d u$.
16. $\int u^{n} \ln u d u=\frac{u^{n+1} \ln u}{n+1}-\frac{u^{n+1}}{(n+1)^{2}}+C, \quad n \neq-1$.

1. (a) (6 pts) Compute the present value of a continuous annuity that pays at the annual rate $f(t)=1500 t$ for $T=10$ years, assuming that interest is compounded continuously at the rate $r=3 \%$.
(b) (6 pts) Compute the Gini coefficient (of inequality) for the nation whose income distribution function is given by $f(x)=0.8 x^{2}+0.2 x$.
2. (6 pts) The price elasticity of demand, $\eta_{q / p}$, for a monopolistic firm's product is proportional to the square root of p, the price of the firm's good. ${ }^{\dagger}$ Find the demand function $q=h(p)$ for the firm's product, given that $h(9)=200$ and $h(16)=120$.

[^0]3. A household's utility function is given by
$$
U(x, y, z)=10 \ln x+8 \ln y+7 \ln z
$$
where x, y and z are the quantities of Xidgets, Yidgets and Zidgets, respectively, consumed by the household each month. The prices per unit for these three goods are $p_{x}=\$ 15, p_{y}=\$ 10$ and $p_{z}=\$ 5$, respectively.
(a) (6 pts) Find the quantities of Xidgets, Yidgets and Zidgets that should be consumed each month to maximize the household's utility, given that their monthly XYZ-budget is $B=\$ 6000$.
(b) (2 pts) By approximately how much will the household have to increase their monthly XYZ-budget from its current level to increase their (maximum) utility by 3 utils? Explain your answer briefly.
(c) (2 pts) By approximately how much will the household's (maximum) utility change from the value you found in a., if the average price of a Yidget increases by $\$ 1$, assuming that the other prices and their budget stay the same? Justify your answer in terms of the envelope theorem.
4. (8 pts) Find the critical points of the function
$$
g(x, y)=x^{2}+4 x y+2 y^{2}+y^{3}+2 x+5
$$
and classify the critical values using the second derivative test.
5. The average monthly demand (q) for a monopolistic firm's product is related to the price of their product (p), the average price of substitutes for their product $\left(p_{s}\right)$ and the average monthly household income in the market for the firm's product (y), by the equation:
$$
q=\frac{150\left(2 y+20 p_{s}+352\right)^{2 / 3}}{4 p+50} .
$$
(a) (6 pts) Compute $\partial q / \partial p, \partial q / \partial p_{s}$, and $\partial q / \partial y$ when $p=25, p_{s}=24$ and $y=2500$.
(b) (2 pts) Suppose that income stays fixed, but both prices increase by $\$ 1$. Use your answer to a. to estimate the change in demand for the firm's product.
(c) (2 pts) What is the income-elasticity of demand at the point in part a.?
6. The production function for ICME WADGETS is given by
$$
Q=20 K^{0.7} L^{0.3},
$$
where Q is the number of wadgets ICME produces in one year, K is the number of units of capital input and L is the number of units of labor input ICME uses to produce their wadgets.

The price per unit of capital input is $p_{K}=\$ 5,000$ and the price per unit of labor input is $p_{L}=\$ 3000$.
(a) (6 pts) Find the levels capital and labor input that minimize the cost of producing $q=10,000$ wadgets. What is the corresponding minimum cost?
(b) (2 pts) How much would it cost ICME to produce another 50 wadgets? Is your answer precise or approximate? Explain.

[^0]: ${ }^{\dagger}$ I.e., $\eta_{q / p}=k \sqrt{p}$, where k is the constant of proportionality.

