Section 15.6, problem 4: The assumption of logistic growth means that

$$
N(t)=\frac{M}{1+b e^{-r t}}
$$

where in this case is $M=50,000$, because the number of students with the ringtone cannot exceed the number of students at the university. I.e.,

$$
N(t)=\frac{50000}{1+b e^{-r t}}
$$

When the investigation starts, 500 students have the ringtone, so $N(0)=500$, which means that

$$
500=N(0)=\frac{50000}{1+b e^{0}} \Longrightarrow 1+b=\frac{50000}{500} \Longrightarrow b=99
$$

since $e^{0}=1$. One week later, the number of students with the ringtone is 1500 , and assuming that we measure time in weeks, this means that

$$
1500=N(1)=\frac{50000}{1+99 e^{-r}} \Longrightarrow 1+99 e^{-r}=\frac{50000}{1500} \Longrightarrow e^{-r}=\frac{100 / 3-1}{99} \approx 0.3266
$$

It follows that $r=-\ln (0.3266) \approx 1.119$, so the formula that the newspaper publishes is

$$
N(t)=\frac{50000}{1+99 e^{-1.119 t}} .
$$

Section 17.1, problem 8: $\quad g(w, z)=\sqrt[3]{w^{2}+z^{2}}=\left(w^{2}+z^{2}\right)^{1 / 3}$, so

$$
\frac{\partial g}{\partial w}=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-2 / 3} \cdot 2 w \quad\left(=\frac{2 w}{3\left(w^{2}+z^{2}\right)^{2 / 3}}\right)
$$

and

$$
\frac{\partial g}{\partial z}=\frac{1}{3}\left(w^{2}+z^{2}\right)^{-2 / 3} \cdot 2 z \quad\left(=\frac{2 z}{3\left(w^{2}+z^{2}\right)^{2 / 3}}\right)
$$

Section 17.1, problem 14: $\quad h(x, y)=\frac{\sqrt{x+9}}{x^{2} y+y^{2} x}=\frac{(x+9)^{1 / 2}}{x^{2} y+x y^{2}}$, so

$$
h_{x}=\frac{\frac{1}{2}(x+9)^{-1 / 2}\left(x^{2} y+x y^{2}\right)-(x+9)^{1 / 2}\left(2 x y+y^{2}\right)}{\left(x^{2} y+x y^{2}\right)^{2}} \quad\left(=-\frac{x^{2} y+x y^{2}-36 x y-18 y^{2}}{2(x+y)^{1 / 2}\left(x^{2} y+x y^{2}\right)^{2}}\right)
$$

and

$$
h_{y}=\frac{\partial}{\partial y}\left(\sqrt{x+9} \cdot\left(x^{2} y+x y^{2}\right)^{-1}\right)=\sqrt{x+9} \cdot\left((-1)\left(x^{2} y+x y^{2}\right)^{-2}\left(x^{2}+2 x y\right)\right)=-\frac{\sqrt{x+9}\left(x^{2}+2 x y\right)}{\left(x^{2} y+x y^{2}\right)^{2}}
$$

Section 17.2, problem 24: $q_{A}=60-3 p_{A}-2 p_{B}$, so $\left.q_{A}\right|_{\substack{p_{A}=5 \\ p_{B}=3}}=39$,

$$
\left.\eta_{p_{A}}\right|_{\substack{p_{A}=5 \\ p_{B}=3}}=\left.\frac{\partial q_{A}}{\partial p_{A}} \cdot \frac{p_{A}}{q_{A}}\right|_{\substack{p_{A}=5 \\ p_{B}=3}}=(-3) \cdot \frac{5}{39}=-\frac{5}{13}
$$

and

$$
\left.\eta_{p_{B}}\right|_{\substack{p_{A}=5 \\ p_{B}=3}}=\left.\frac{\partial q_{A}}{\partial p_{B}} \cdot \frac{p_{A}}{q_{A}}\right|_{\substack{p_{A}=5 \\ p_{B}=3}}=(-2) \cdot \frac{3}{39}=-\frac{2}{13} .
$$

