Section 17.7, problem 16: The Lagrangian is

$$
F(l, k, \lambda)=20 l+25 k-l^{2}-3 k^{2}-\lambda(2 l+4 k-50) .
$$

The first order conditions:

$$
F_{l}=0 \Longrightarrow 20-2 l-2 \lambda=0 \Longrightarrow \lambda=10-l
$$

and

$$
F_{k}=0 \Longrightarrow 25-6 k-4 \lambda=0 \Longrightarrow \lambda=\frac{25-6 k}{4}
$$

Next

$$
\lambda=\lambda \Longrightarrow 10-l=\frac{25-6 k}{4} \Longrightarrow 40-4 l=25-6 k \Longrightarrow k=\frac{4 l-15}{6} .
$$

Plugging this into the constraint, we find that

$$
2 l+4 k=50 \Longrightarrow 2 l+4 \cdot \frac{4 l-15}{6}=50 \Longrightarrow 28 l=360 \Longrightarrow l^{*}=\frac{360}{28}=\frac{90}{7}
$$

and

$$
k^{*}=\frac{4 l^{*}-15}{6}=\frac{255}{42} .
$$

Finally, the firm's maximum output subject to the budget constraint is

$$
f^{*}=20 l^{*}+25 k^{*}-\left(l^{*}\right)^{2}-3\left(k^{*}\right)^{2} \approx 133
$$

Section 17.7, problem 18: The constraint in this case is

$$
25 l+69 k=25875
$$

and the Lagrangian is

$$
F(l, k, \lambda)=6 l^{2 / 5} k^{3 / 5}-\lambda(25 l+69 k-25875) .
$$

First order conditions:

$$
F_{l}=0 \Longrightarrow \frac{12}{5} l^{-3 / 5} k^{3 / 5}-25 \lambda=0 \Longrightarrow \lambda=\frac{12 k^{3 / 5}}{125 l^{3 / 5}}
$$

and

$$
F_{k}=0 \Longrightarrow \frac{18}{5} l^{2 / 5} k^{-2 / 5}-69 \lambda=0 \Longrightarrow \lambda=\frac{18 l^{2 / 5}}{345 k^{2 / 5}}
$$

Next

$$
\lambda=\lambda \Longrightarrow \frac{12 k^{3 / 5}}{125 l^{3 / 5}}=\frac{18 l^{2 / 5}}{345 k^{2 / 5}} \Longrightarrow 4140 k=2250 l \Longrightarrow k=\frac{25}{46} l .
$$

Plugging this into the constraint gives

$$
25 l+69 k=25875 \Longrightarrow 25 l+69 \cdot \frac{25}{46} l=25875 \Longrightarrow l^{*}=414
$$

and

$$
k^{*}=\frac{25}{46} l^{*}=225
$$

SN 5, problem 4: At the end of Example 11, the maximum utility U^{*} is given as

$$
U^{*}=a \ln \left(\frac{Y_{d}}{p_{A}}\left(\frac{a}{a+b}\right)\right)+b \ln \left(\frac{Y_{d}}{p_{B}}\left(\frac{b}{a+b}\right)\right),
$$

and simplifying this, using properties of the logarithm functions shows that

$$
U^{*}=\overbrace{(a+b)}^{\alpha} \ln Y_{d}+\overbrace{\left[a \ln \left(\frac{a}{a+b}\right)+b \ln \left(\frac{b}{a+b}\right)-a \ln p_{A}-b \ln p_{B}\right]}^{\beta}=\alpha \ln Y_{d}+\beta .
$$

